
Stat Biosci (2017) 9:622–645
https://doi.org/10.1007/s12561-016-9185-5

Classification of Large-Scale Remote Sensing Images
for Automatic Identification of Health Hazards
Smoke Detection Using an Autologistic Regression Classifier

Mark A. Wolters1 · C. B. Dean2

Received: 24 May 2016 / Accepted: 15 November 2016 / Published online: 28 November 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Remote sensing images from Earth-orbiting satellites are a potentially rich
data source formonitoring and cataloguing atmospheric health hazards that cover large
geographic regions. Amethod is proposed for classifying such images into hazard and
nonhazard regions using the autologistic regression model, which may be viewed as
a spatial extension of logistic regression. The method includes a novel and simple
approach to parameter estimation that makes it well suited to handling the large and
high-dimensional datasets arising from satellite-borne instruments. The methodology
is demonstrated on both simulated images and a real application to the identification
of forest fire smoke.

Keywords Machine learning · Hyperspectral images · Image segmentation ·
Autologistic regression · Forest fire smoke

1 Introduction

In the current Big Data era, one may (naively) be inclined to believe that relevant data
are copious and cheaply available regardless of the circumstances. In such a moment,
wemay remind ourselves that obtaining data of high quality—with sufficient accuracy
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and precision, and measured representatively over the population in question—is not
always easy. One situation of this type is the assessment of exposure to airborne
environmental health hazards. In this case, we are interested in the estimation of a
spatial field that may cover a large geographic area. The field may be viewed as a
two-dimensional region if only surface concentrations are of interest, or as a three-
dimensional space if elevation is included.

Direct measurement of the hazard over the entire region is a practical impossibility.
The next best thing is to take direct measurements at a set of monitoring stations, and
use these point estimates to estimate the rest of the spatial field. The number and loca-
tion of monitoring stations are typically subject to physical and economic constraints,
however, making optimal allocation of resources in this setting an important research
topic in its own right (see, e.g. [15]).

While a network of monitoring stations may indeed generate enough information
to warrant classification as “big data”, the sparsity of the network in many areas is a
limiting factor. Exposure assessment is no longer a question of measurement only, but
of prediction as well. Given the monitoring stations’ output, prediction over the spatial
field may be done using statistical methods, using suitable computational models of
the physical system, or using these two methods in combination [8].

The present work considers how remote sensing imagery from Earth-orbiting satel-
lites might be used as an alternative data source to help study exposure to airborne
health hazards. A variety of instruments orbiting the earth are continuously collecting
radiometric data that, with appropriate analysis, may provide a useful independent data
source. While information from remote sensing instruments might not be as accurate
or detailed as that from a monitoring station, the spatial coverage of the imagery is far
greater, potentially covering the entire area of interest.

A longstanding example of the use of satellite data to study the atmosphere is the
measurement of aerosol optical depth (AOD; see, e.g. [17,20]). While aerosols are not
readily visible to the eye (for example, in colour images of the surface), the estimation
of AOD from radiometric data is relatively well established from an understanding of
the relevant physical principles. Our methods, by contrast, are designed for situations
where a human photointerpreter is able to identify the hazard of interest, but the
fundamental understanding is insufficient to permit automated identification of the
hazard fromfirst principles.We rely onmachine learning techniques applied to labelled
samples to develop classifiers that can recognize the hazard in new images.

The nature of remote sensing imagery makes it ripe for application of machine
learning techniques. The reasons for this are threefold.

First, the data are high dimensional. Images are not only of high resolution (having
high pixel counts), but in many cases are hyperspectral, consisting of many image
planes. As illustrated in Fig. 1, a hyperspectral image with k planes is an array stacking
k greyscale images on top of each other. Each greyscale image represents the scene
as measured in a certain wavelength. Hyperspectral images cannot be visualized as a
single colour image without loss of information, making them difficult for a human to
interpret.

Second, the data are of high throughput. TheMODIS datawe use for our application
in Sect. 5, for example, provide almost whole-globe coverage at 1 km2 per pixel
resolution on a daily basis.
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Fig. 1 An illustration of a hyperspectral image

Third, the most common task in photointerpretation is segmentation—assigning
labels to pixels to divide the image into meaningful categories. But this is just classi-
fication, the dominant task in machine learning.

The volume and throughput of data make a complete analysis of the images through
the judgement of human experts impractical. At the same time, the task being carried
out (classification) is well suited to machine automation. So it makes sense to use a
limited set of expert-labelled training images to develop automated routines; if this
can be done successfully, complete cataloguing of the remote sensing data as it arrives
becomes a reasonable goal.

The application of classification methods to segmentation of hyperspectral images
is of course a very broad research goal. To make the present scope more modest, we
consider a specificmodel: the autologistic regression classifier. Further,we develop our
methods with a specific application—the identification of smoke from forest fires—in
mind. This application, our dataset, previous work, and details of the model are all
described in Sect. 2.

Autologistic regression is attractive as a segmentation method because it incorpo-
rates spatial associations in a principled,model-basedmanner; but practical application
of themodel to large image sets involves daunting computational challenges. Section 3
describes a novel analysis procedure that overcomes these challenges and allows large
sets of high-resolution, hyperspectral images to be processed in a reasonable time. The
procedure is described in a general context and should be applicable to other problems
in remote sensing image processing.

Following the description of the modelling process, Sect. 4 provides experimental
evidence of the method’s validity using a collection of simulated images. Section 5
shows how the methods performed on the smoke identification dataset. The paper
concludes with two short sections giving discussion and conclusions.
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Fig. 2 The region of interest, showing a a clear-sky composite image, and b a typical image during a
significant smoke event

2 Background

Below, we first describe the application of interest in more detail, along with the data
we have collected. We then summarize previous work that has been done with these
data, and describe the autologistic regressionmodel as a natural extension of that work.

2.1 Smoke Identification

Forest fire events can produce great quantities of smoke that can subsequently cover
very large geographic areas. Figure 2a shows the region of interest (ROI) for our appli-
cation. It is a true-colour image constructed from the hyperspectral data (following the
guidance in Gumley et al. [9]). This particular image is actually a background image
composed by combining the clear-sky portions of 17 individual images and taking the
median values of each spectral component at each pixel. Contrast this with Fig. 2b,
which shows the same region during a significant smoke event.

The dataset has been described in detail by Wolters and Dean ([27, Sect. 1.2]),
so only a summary will be given here. The ROI is centred at Kelowna, Canada,
and covers an area of over 8 × 105 km2. There are 143 images covering the fire
seasons on consecutive days over three years, and all of the images are 779 pixels high
and 1559 pixels wide. The data were collected by the moderate resolution infrared
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spectroradiometer (MODIS) instrument aboard NASA’s Terra satellite, and consist of
k = 35 spectral bands.

The conventional approach to smoke exposure tracking is, very roughly, (i) the
estimation of smoke discharge from known characteristics of the fire, followed by (ii)
predicting the spatiotemporal dispersion of the smoke using computational models
including the effects of weather, topography, and so on. Sakiyama [22] and Yao et al.
[30] describe one such system that is in use in Canada.

While existing air quality monitoring stations may provide some relevant data on
exposure, their relevance is limited, because the location of the smoke event is not
known in advance, and typicallymuch of the smoke dispersion occurs over uninhabited
regions where no stations exist. Hence, it is potentially quite beneficial to have even a
presence/absence indication of smoke over the ROI. Such data could be used to inform
the smoke dispersion models, or could be used on their own in studies of the health
impacts of smoke.

2.2 Previous Work

The literature on image segmentation is vast, as is the collection of machine learning
and computer vision techniques with potential applicability to remote sensing data.
That said, the amount of work on applying machine learning specifically to hyper-
spectral imagery is comparatively small. We recommend [21] as a modern overview
of the field.

An initial study of smoke identification over the same ROI and time period as our
dataset was reported byWan et al. [25]. This study was exploratory in nature and con-
sidered only RGB colour images of the scene. It considered different approaches to
pixel clustering based on the distribution of intensity in the red, green, and blue chan-
nels. While the results of the study showed promise, it was limited in a few respects.
The colour channels were not modelled jointly, and all pixels were considered inde-
pendent of one another. The study considered only clustering (unsupervised learning),
so the accuracy of smoke predictions could not be quantified against labelled test
images. Furthermore, the discriminatory power of the methods was inherently limited
by the use of the colour images only, instead of the full set of hyperspectral data.

The work ofWolters and Dean [27] addressed some of these limitations by (i) using
the hyperspectral images, (ii) modelling all of the spectral channels jointly through a
logistic regression framework, and (iii) hand-labelling all pixels in the dataset as smoke
or nonsmoke. The existence of pixel labels meant a supervised learning approach
could be used. The available images were divided into training set (which was used
to estimate model parameters), a validation set (used to do variable selection), and
a test set (used to evaluate final model performance). It was found that while smoke
plumes and other areas of thick smoke could be identified well, areas of low smoke
concentration and areas with both smoke and cloud were difficult to predict correctly.
This was attributed partly to labelling errors in the dataset, and partly to the inherent
difficulty of separating the two classes.

The present work represents a further refinement of themethods of the previous two
studies. We have considered improvements to the structure of our logistic regression
model, and (most importantly from a technical standpoint) have incorporated spatial
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association among adjacent pixels bymoving to an autologistic regressionmodel. This
model is described in the next subsection.

It is worth emphasizing that while the smoke identification problem has motivated
our work, we view the autologistic regression classification procedure, outlined in
Sect. 3, as the main contribution of this work. It is a general process that could be used
to build automated image segmentation tools from any set of hyperspectral images
with labelled training samples.

2.3 Autologistic Regression

The autologistic model is a model for the probability distribution of a set of binary
random variables with dependence described by a graphical structure. That is, the set
of n variables may be considered vertices in an undirected graph; the edges in the
graph encode the dependence structure among the variables. Its origins in the spatial
statistics literature lie in the work of [3,4], though it is equivalent to the much older
Ising model of statistical physics. Models on undirected graphs are unified in the
theory of Markov random fields (MRFs), which are common in model-based image
processing methods (see e.g. [5]).

Autologistic regression models arise by incorporating covariate effects into the
autologistic model. This allows the distribution of a set of binary random variables to
be influenced by both covariate effects and the effect of neighbour variables through
the graphical structure. Such models have been used in the ecological literature for
studying regression problems related to the spatial characteristics of plant or animal
species [1,11,12,29].

Having assumed a graphical model for the binary responses, the entire set of vari-
ables (in our case, all the pixels in an image) must be modelled jointly. Let all of the
pixels in an image be numbered from 1 to n, with binary random variable Zi repre-
senting the class of the i th pixel. For the moment, let the coding of the binary variables
be unspecified, so that Zi can take values in {L , H} (for “low” and “high”). Let Z be
the random vector representing the classes of all pixels in an image. Then the joint
probability mass function (PMF) of Z under the autologistic regression model is

Pr(Z = z) ∝ exp

(
(Xβ)T z + λ

2
zTAz

)
. (1)

Two terms appear in the exponent on the right-hand side. The first and second terms
are referred to, respectively, as the unary and pairwise terms.

The unary term depends linearly on the binary responses z. It is in this term that the
regression component is incorporated. The vector Xβ is the linear predictor, where
X is an n × r matrix of predictors derived from the hyperspectral image data; the i th
row of X comprises the predictors for Zi . The r -vector β holds the corresponding
regression coefficients.

The pairwise term is the part of the model that handles the spatial association. It is
a quadratic form in z, where A is an adjacency matrix of the graph. The coefficient
λ > 0 controls the strength of spatial association.
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The model can also be expressed in a conditional logit form that aids interpretation.
Letting πi be the conditional probability that Zi = H , given all other variables in the
graph, it can be shown that, for each i ,

log

(
πi

1 − πi

)
= (H − L)

⎛
⎝xTi β + λ

∑
j∼i

z j

⎞
⎠ , (2)

where the notation j ∼ i means that pixels j and i are neighbours according to the
graph. This version of the model shows that the conditional logit of πi depends on
the regression part plus an extra term: the coefficient λ times the sum of pixel i’s
neighbour classes. It is clear that if λ = 0, we have independence among the pixels
and the model reverts to a standard logistic regression.

Throughout this work, we use a simple neighbourhood structure: our graph is a
regular square grid, with each pixel connected to its immediate neighbours to the top,
bottom, left, and right. Therefore, the sum in (2) has four terms whenever i is an
interior pixel (and 2 or 3 terms if it is at the edge of the image).

2.4 Estimation, Coding, and Centring

Despite the apparent simplicity of the conditional logit form (2), it should be remem-
bered that the variables are in fact modelled jointly and that the coefficients (β, λ)

should properly be estimated simultaneously from the joint PMF (1). This repre-
sents the major technical challenge with the autologistic regression approach, because
the PMF is specified only up to proportionality, and the proportionality constant is
intractable (consisting of 2n terms). Thus numerical optimization of the likelihood,
for example, is impractical.

Themost common (and simplest) alternative ismaximumpseudolikelihood (MPL),
which replaces the true likelihood for an image by the product of the conditional
probabilities πi used in the logit form. Other approaches to the estimation of the
autologistic model have also been considered. Hughes et al. [13] provide a good
overview of the major options (as applied to the centred model described below).
They compareMPLwithMonte Carlomaximum likelihood and a Bayesian estimation
approach. The most presently relevant of their conclusions were (i) that MPL is to be
preferred for computational feasibility with large datasets, and (ii) that a high degree of
spatial dependence (large λ) can make reliable inference hard for any of the methods.

Thus far, we have left the coding of the variables Zi unspecified. It is habitual in
statistics to code binary variables as {0, 1}, but for this model the zero/one coding leads
to an undesirable asymmetry. Consider the sum

∑
j∼i z j in (2). When pixel i has four

neighbour pixels, each of which may take value zero or one, this sum can only take
values 0, 1, 2, 3, or 4. Because the sum can never be negative, a pixel’s neighbours can
never cause the log-odds that Zi = 1 to decrease, even when all four neighbours are 0
(the “low” value). The consequence is that estimates of β and λ are strongly coupled,
and interpretation of the regression parameters becomes more difficult.

This asymmetry problem with the standard autologistic model has been noted and
studied by Caragea and Kaiser [6] and Hughes et al. [13]. They concluded that a
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centred autologistic model is to be preferred. In logit form, the centred model is

log

(
πi

1 − πi

)
= xTi β + λ

∑
j∼i

(z j − μ j ), (3)

where μ j is the independence expectation of Z j , that is, the expected value of the j th
variable assuming λ = 0.

It should be noted that the centred autologistic model was developed with the
zero/one coding implicitly assumed throughout. In the presentwork,we take a different
approach: we directly address the asymmetry by changing the coding to Zi ∈ {−1, 1}
without using the centring adjustment. It is easily seen that by letting L and H be
symmetric around zero, the neighbour contribution

∑
j∼i z j in (2) also becomes sym-

metric: the conditional log-odds of Zi = 1 will decrease if a majority of neighbours
are negative, increase if a majority are positive, and be unchanged in the case of a tie.
Aside from being more simple than the centred model, this approach enables a para-
meter estimation shortcut (described in the next section) that yields good predictive
models with reasonable computational effort.

3 Methods

Our goal is to build a classifier using supervised learning techniques with an autol-
ogistic regression model, given a collection of labelled hyperspectral images. It is
assumed that there are from hundreds of thousands to millions of pixels per image,
and that the number of images is sufficient for the problem to be considered data rich.
By this, we mean that the number of pixels is more than sufficient for accurate statisti-
cal estimation; rather, the challenge is in using the data in a computationally efficient
manner.

3.1 An Estimation Shortcut for Large-Scale Classifier Construction

Our proposal for analysis is shown pictorially in Fig. 3, which illustrates the flow of
the data through the analysis procedure. Starting at the top, we see that the data are
first split into training, validation, and test groups at the image level. Conventionally,
the split of images among these groups might be 50/25/25% [10]. The autologistic
classifier is then built up in two stages, shown as shaded blocks in the figure. This
two-stage approach is a distinctive feature of our proposal.

In the first stage, independence is assumed among pixels, and we endeavour to
construct the best possible classifier using logistic regression. To do this, a large
set of potential predictors (features) are first derived from the original hyperspectral
data, and then an optimal subset of them is chosen. This involves repeated parameter
estimation and performance evaluation. To do this in reasonable time, the fitting and
model selection is not done using the full set of training and validation images; rather,
large samples of pixels are taken from each of the groups.

The second stage takes the best logistic model and converts it to an autologistic
regression by “plugging in” its parameter vector β, setting λ to a nonzero value. The
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Fig. 3 Analysis flowchart for classifier construction

value of λ is chosen to maximize predictive performance on the set of validation
images. At this point, the classifier construction is finished and the final out-of-sample
prediction performance can be evaluated using the test images.

Some results justifying the proposed plug-in approach and contrasting it with MPL
estimation are given in Sect. 4, but a few comments on the proposal can be made
here. First, the method depends on using the {−1, 1} coding for Z. The symmetry
introduced by this coding change appears to decouple β and λ sufficiently that the two
parameters can be estimated separately and still produce a useful predictive model.
Second, this approach allows the autologistic model to be viewed simply as a spatially
smoothed logistic regression, with λ acting as a smoothing parameter. As in other
machine learning settings, we choose to set the value of this extra parameter directly
based on a measure of predictive accuracy. Here, we are making use of the fact that our
problem is purely predictive in nature. We are not interested, for example, in standard
errors for the regression coefficients.1 Finally, estimating the parameters this way is
prudent in our big data setting, where computational efficiency is a major concern.
Performing model selection and estimation of β with standard logistic regression
is already computationally challenging, but it represents a major time saving over
performing these steps with the full autologistic model.

The following two subsections fill in some details about the model selection and
prediction steps of the process.

1 Obtaining standard errors for β is challenging regardless of the estimation approach. We expect that
resampling methods would enable us to obtain standard errors with the plug-in estimation procedure, and
that these would be comparable to those obtained when β and λ are estimated jointly. As mentioned, this
avenue was not pursued given the prediction-focused nature of the segmentation task.
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3.2 Model Selection

The predictors X in (1) are not necessarily the hyperspectral data themselves; they
may be any quantities derived from the original images. In building a classifier, it
is helpful to start with a large collection of candidate predictors (features) and to
select an optimal subset of these. In [27], for example, over 4000 candidate predictors
were constructed from the hyperspectral data, their squares, square roots, and various
interaction. In Sect. 5, bases for piecewise linear functions of the hyperspectral data
are used.

In general, let X∗ be a matrix containing all of the candidate predictors, one per
column. We seek the subset of columns of X∗ that provides optimal out-of-sample
predictions. It may be expected that the number of columns in X∗ is in the hundreds
or thousands, while the optimal subset is comparatively much smaller. An exhaustive
search through the possible subsets is impractical. Two reasonable approaches for
model selection in this setting are shrinkage methods, and best-subsets search using
heuristic methods. We take the LASSO [24] as prototypical for the former approach,
and genetic algorithms (e.g. [16]) for the latter. We have used both of these methods
and found they yield models with similar predictive capability. Our computing was
done in the R environment [19], where packages glmnet [7] and kofnGA [26] can
be used for shrinkage estimation and genetic algorithm search, respectively.

Because both the feature space and the amount of data are large, model selection is
potentially time consuming even under the assumption of pixel independence. Even
fitting a single logistic regression on the full dataset (which could consist of scores of
megapixel images) could require advanced techniques due to local computer memory
limitations.

The sampling step shown in Fig. 3 is proposed to reduce the computational burden
of model selection. The sample size can be chosen so that parameter estimates and,
more importantly, estimates of predicted probabilities, can be obtained with adequate
accuracy in reasonable time. The best sample size to use will depend on the particular
problem and the nature of the computational resources available, but preliminary
trials should be sufficient to identify a reasonable choice. In our previous work with
the smoke data, for example, we found that it was sufficient to sample 105 pixels each
for the training and validation sets. With this sample size, prediction error rates could
be estimated to within the nearest percentage point.

3.3 Prediction and Performance Evaluation

At both stages of estimation, the validation set is used to evaluate classifier perfor-
mance using the fitted (predicted) probabilities, { p̂i }. The quantity p̂i is the marginal
probability that pixel i takes value +1 (smoke), under the fitted model. The fitted
probabilities are used differently at each estimation stage.

At the model selection stage, where the logistic model is used under the inde-
pendence assumption, we prefer to use the validation set deviance (−2 times the
log-likelihood) as a measure of model quality. For any particular candidate model, this
requires estimating the regression coefficients from the training pixels and then gener-
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ating fitted probabilities for the validation pixels. These fitted probabilities are used to
obtain the deviance. Deviance has been recommended elsewhere for model selection
in logistic regression, particularly when using a shrinkage estimation approach [7].

In this first stage, both parameter estimation and performance evaluation are done
using samples of the pixels in the training and validation images. One should be aware
of the connection between pixel sampling and misclassification costs in our analysis
scheme. The smoke data, for example, consist of about 90% nonsmoke and only 10%
smoke pixels. If, in this case, we use simple random sampling to draw pixels for fitting
the logistic regression model, we are implicitly prioritizing correct classification of
nonsmokeover correct handlingof smoke.Any incremental change in the classification
error rate for the nonsmoke class will cost nine times as much (in terms of total error
rate) as an equivalent change on the smoke class. One way to rectify this is to control
the proportion of each class in the sampled pixels. In the analyses of the next two
sections, for example, we require that each class makes up 50% of the final sample.

In the second stage where the autologistic model is used, a different approach is
required. Pixels cannot be treated independently, so we do not sample pixels, and
predictions are generated for whole images at once. A direct measure of prediction
accuracy is then used, rather than a deviance. Given a set of estimated coefficients
(β̂, λ̂) and the image dataX for a validation image, the approach is to first generate the
fitted probabilities { p̂i }, and then compare these to a cutoff c. Any pixel i for which
p̂i > c is assigned to class 1; the rest are assigned to the −1 class. It is natural to set
c = 0.5, so that each pixel is assigned to the class with higher fitted probability, but
it is possible that a different cutoff value is optimal, and one could search for the best
choice of c in a given application. Previous work on the smoke data [27] explored
different c choices and found that c = 0.5 was appropriate, so we continue to use that
value here.

The predicted classes can be compared to the actual classes of the validation images
to produce a confusion matrix that tabulates the proportion of pixels of each class that
were correctly and incorrectly identified. From this matrix it is possible to compute
a variety of overall measures of performance: the overall error rate, the average error
rate of the two classes, the Rand measure, the F-measure, and others. If we allow the
cutoff c to vary, we could also consider integrated measures of quality like AUC (area
under the receiver operating characteristic curve). The reader is referred to [18], and
references therein, for more information.

There is no single best measure of classifier performance; the appropriate choice
will depend on the application and, in particular, on the relative cost of the two types
of error (e.g. the costs of predicting smoke when it is not there, versus the cost of
missing a true smoke event). As in any quantitative evaluation, the measure used to
define success should be chosen with care, since it will have a significant influence
on the results. In the analyses to follow, we judge the two types of error to have equal
weight, and simply use the total error rate as our performance measure.

A complication with the above procedure is that the probabilities { p̂i } are not easily
calculated for the autologistic model, owing to the intractable normalizing constant
in the PMF. This problem is overcome by repeated simulation of realizations from
the fitted model, which are then averaged to estimate the fitted probabilities. A few
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methods for simulating draws from an autologistic model are possible [2,13,23], but
for our purposes, we use a Gibbs sampling approach [which is easy to implement
because of the simple form of the full conditionals (2)].2

The final autologistic model with best parameter estimates (β̂, λ̂)may subsequently
be used to generate predictions on new images, where true class labels may or may
not be known. This is done in the same way just described: the new image provides
the X data for the fitted autologistic model, which is used to generate predicted prob-
abilities by repeated simulation. The estimated probabilities are converted into binary
predictions by comparison with the cutoff c.

4 Analysis of Simulated Images

To test the validity of the approach just described, the methods have been applied to
a set of synthetic images. Using simulated images has a number of advantages. There
is no uncertainty about the true classes of the pixels; the number of images, their size,
and the proportion of each class can be controlled; and the overall difficulty of the
classification task can be controlled as well.

The primary goal with the simulated images was to investigate the validity of the
two-stage estimation approach described in Sect. 3.1. To that end, the simulated images
had only three planes. This allows them to be easily viewed as RGB images. It also
eliminates the need for the model selection step, making it possible to focus on the
performance of the estimation shortcut and the autologistic model.

4.1 Generating the Images

The autologistic model is a conditional random field (CRF) image model [14]. Rather
including a full generativemodel for the image dataX, themodel takesX to befixed and
given. This is an advantage of the model—the daunting task of realistically modelling
the image’s generating process is avoided—but it comes with the consequence that
we cannot simulate random images from our model for test purposes. A different
approach is needed.

The simulated images are to have two underlying true classes. One class may be
thought of as the background (nonsmoke), and the other as connected regions of
pixels overlaid on this background (smoke). The colours of each pixel are drawn from
a distribution that depends on the true class, and also exhibits spatial correlation among
pixels with the same class labels. To generate RGB images with these characteristics,
the following procedure was followed:

1. Let an n-by-n image be mapped onto the unit square.
2. Generate a specified number of ellipses in the unit square with random foci and

random major axis length. Pixels residing inside the union of these ellipses are
assigned to the foreground (“smoke”) class; the remainder are assigned to the
background class.

2 We have found no drawbacks to using Gibbs sampling, and found that runs of approximately 400 draws
were sufficient to get good estimates of the marginal probabilities. Furthermore, it is only necessary to
obtain good estimates of whether pi > c, not of the pi s themselves.
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3. Generate realizations of three independent Gaussian Markov random fields
(GMRFs) defined on the pixel lattice with 3 × 3 neighbourhoods: one for red,
one for blue, and one for green. Each GMRF is equal to a constant plus a zero-
centred GMRF with user-specified parameters.

4. Use the antilogit function to transform the realizations from the previous step onto
the [0, 1] scale.

5. Let the pixels in the background class take their R, G, B values from the corre-
sponding pixels in the three GMRF draws obtained from steps 3 and 4.

6. Repeat steps 3 and 4 with alternative parameters. Let the pixels in the foreground
class take their R, G, B values from the corresponding pixels in these new GMRF
draws.

Using randomellipses allows us to obtain “smoke” regionswith random shapes, and
the total amount of smoke also varies from image to image. The shape characteristics
and proportion of smoke can bemodified by varying the parameters controlling ellipse
generation. For the present study, we used 25 ellipses per image.

Varying the parameters of the GMRFs allows control of the within-class spatial
smoothness as well as the between-class colour differences. In generating the GMRFs,
the constant vector (R, G, B) was set to (on the [0,1] scale) (0.75, 0.65, 0.55) for the
background and (0.6, 0.5, 0.7) for the foreground. These parameter settings were
chosen to make the classification task a challenging one, not unlike the smoke identi-
fication task. At these settings, the foreground class is generally more blue/purple and
the background class is generally more red/yellow, but there is considerable noise and
significant overlap between the two classes. Figure 4 provides three example images
with their true classes. Even a human being with knowledge of the elliptical nature of
the foreground class would have difficulty achieving perfect classification.

Images were generated at five different sizes: 100, 200, 400, 600, and 800 pixels
square. Ninety images were generated for each size, and these were divided equally
into three groups for training, validation, and testing.

4.2 Predictive Performance

Each image size was analysed separately, using the procedure of Fig. 3 (but omit-
ting the model selection step). The independent-pixel logistic model was fit using
a sample of 105 pixels from the training images, with 50% of the sample hav-
ing each class. The predictors for the logistic model were the red, green, and blue
colour intensities in the image. The pairwise parameter in the autologistic model was
estimated by the plug-in approach: predictions were generated for candidate values
λ = 0, 0.05, 0.1, 0.15, . . . , 2, and λ̂ was set to the value that minimized the validation
set deviance.

For comparison purposes, the model parameters were also estimated by maximum
pseudolikelihood. The best plug-in model and the MPL model were then used for
performance evaluation, as measured by test-set prediction error rate.

Table 1 summarizes the results. It shows the regression coefficient and pairwise
coefficient estimates, along with the overall error rate and run time, for each method
at each image size.
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Fig. 4 Examples of the simulated images. Top row the images. Bottom row the true classes

Table 1 Results of MPL and plug-in estimation for different image sizes

Pixels Method R̂ Ĝ B̂ λ̂ Error rate (%) Time (min)a

1002 plug-in −2.21 −2.02 1.91 0.90 20.1 0.25

PL −2.04 −1.99 2.06 0.99 20.4 0.49

2002 plug-in −1.64 −1.35 1.71 1.00 17.7 0.66

PL −1.61 −1.30 1.70 1.19 17.7 1.5

4002 plug-in −2.05 −1.42 1.63 1.60 20.1 2.8

PL −2.08 −1.40 1.68 1.36 20.1 7.5

6002 plug-in −1.91 −1.22 1.76 1.95 20.6 6.9

PL −1.97 −1.36 1.79 1.51 20.4 20

8002 plug-in −1.55 −1.44 1.58 1.95 18.8 12

PL −1.57 −1.43 1.49 1.59 18.6 35

Symbols R̂, Ĝ, B̂ denote coefficients for the red, green, and blue predictors, respectively. These coefficient
values correspond to the plus/minus response coding. The two estimation methods consistently give similar
parameter estimates and error rates
a Reported times for the plug-inmethod are times for a singleλvalue in a parallel computing implementation;
see the comments in Sect. 6

Considering first the coefficient estimates, it is seen that the two estimationmethods
produce remarkably similar regression coefficients for all image sizes. This is despite
the fact that MPL estimates (β̂, λ̂) simultaneously and the plug-in method does so
in two stages. The pairwise coefficients also show reasonable agreement, though the
differences are larger than for the regression parameters. All of the estimated pairwise
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Fig. 5 Example of prediction results for an 800×800 test image.Left the original image.Right the predicted
probabilities using plug-in estimation. True class boundaries have been superimposed to aid visualization

parameters are quite large, indicating a high degree of spatial smoothness in the fitted
models.

The similarity of the parameter estimates suggests that the two fitted models should
have similar predictive abilities, and the error rates confirm that this is the case. Error
percentages vary from about 18 to about 20, depending on the image size. Figure
5 gives an example 800 × 800 image from the test set, along with the predicted
probability map produced by the plug-in model. The autologistic model has caused
the map to be free of short-range noise. Qualitatively speaking, the predictions display
a good agreement with the visual appearance of the original image. Locations where
predictions were incorrect appear to correspond to areas where the colour distributions
of the two classes truly overlap.

The table also lists run time measurements for each case. Comparison of MPL with
the plug-in approach is not straightforward, however, because implementation details
can have a large impact on run time. A discussion of computational aspects is deferred
to Sect. 6.

4.3 Effect of Coding and Centring

The preceding results showed that the two-stage estimation procedure gave reasonable
parameter estimates and predictions. Increasing λ from 0 while keeping the unary
parameters fixed caused improvements in prediction, due to reduced noise in the
predicted probabilities. In Sect. 2.4, it was claimed that this effect is a consequence of
using the {−1, 1} variable coding. Here we provide evidence to support this claim.

To compare different variants of the autologistic model, the plug-in estimation
procedure was repeated on the 400× 400 simulated images using the standard model
(2) with {0, 1} coding, as well as the centred model (3) with both {0, 1} and {−1, 1}
coding. The overall prediction error rate on the test set was recorded for various λ

values for each model variant.
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Fig. 6 Effect of plugging in various λ values on prediction error, for different autologistic model variants.
Only the standard model with {−1, 1} coding shows improvement; the other models show a strong degra-
dation of performance. Pairwise parameter values for all variants are converted to the {−1, 1}-coding scale

The results are shown in Fig. 6. At λ = 0, all variants give the same performance,
since all of them are equivalent to the independence model. As λ increases, however,
only the standard {−1, 1} model shows an improvement. The standard {0, 1} model
immediately begins to show a decline in performance. The two centred models give
results so similar that their curves are indistinguishable from each other: they first
remain nearly constant, only to show a rapid increase in error rate above about λ =
0.2. This demonstrates that the plug-in estimation approach and its computational
benefits are only viable with the standard {−1, 1} model. For all of the other variants,
simultaneous estimation of (β, λ)would be required to obtain any improvements over
logistic regression. This result is somewhat surprising, given the seemingly minor
differences among the models. A few additional comments on this topic are given in
Sect. 6.

5 Application to the Smoke Data

The methodology of Sect. 3 was also applied to the smoke identification dataset
described in Sect. 2.1. As this is a real-world hyperspectral dataset, the complete
procedure illustrated in Fig. 3 was carried out. Below, we first outline how model
selection and parameter estimation were done, and then give prediction results from
the best model found.
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Table 2 Information about the best models found

Predictor set Selected variables (MODIS band numbers) plug-in λ̂

Main effects 1 6 7 8 14 16 17 18 21 23 25 26 30 31 32 36 1.85

Main effects & interactions 7 30 2:3 5:26 6:11 7:36 8:20 8:22 8:25 8:31
13:15 13:23 16:31 18:23 22:36 32:36

1.75

5.1 Model Selection and Plug-In Estimation

Model selection and regression parameter estimation were done using training and
validation samples of 105 pixels. Each sample was restricted to consist of 50% smoke
pixels and 50% nonsmoke pixels.3

The 35 observed predictors were hyperspectral bands 1–28 and 30–36 (band 29
was not available due to a hardware problem on the instrument). We can refer to these
predictors as main effects.

Two classes of models were considered: first, those models consisting of only main
effect terms; and second, those models consisting of main effects or two-way interac-
tions among the main effects. In each case, models of size 3, 4, 6, 8, 10, . . . , 18 were
considered. Model search was carried out using a genetic algorithm, with validation
set deviance as the objective to be minimized.

To improve the flexibility of the models, a generalized additive model [GAM; 28]
was used, with each factor’s effect on the log-odds modelled as a piecewise linear
function. Say, for example, that our model search is presently considering a model
with band 2, band 3, and the interaction of bands 4 and 5 as predictors. In this case
the independent-pixel model is

log

(
πi

1 − πi

)
= β0 + f2(xi2) + f3(xi3) + f4:5(xi4xi5),

where xi j represents the image value for pixel i in band j , and the functions f·() are
piecewise linear on [0, 1]. Six triangular basis functions were used for each piecewise
function, resulting in five coefficients to be estimated for each factorial effect.4

It happened that the overall minimum-deviance model for both the main-effects
only and the interactions-includedmodels had16predictors. For reference, the selected
variables in each best model are given in Table 2. Inspection of the estimated piecewise
functions (not shown) showedmany nonlinearities and some sign changes.Meaningful
interpretation of these models is hard, however, due to the large number of variables
included.

3 In previous work [27], we used 90% nonsmoke pixels in the samples, to match the population proportion.
This resulted in lower overall error rates than those reported here, but very high false-negative rates among
the truly smoke pixels.
4 Each function was set to have f·(0) = 0 for identifiability. The functions’ boundary knots were set to 0
and 1, with interior knots evenly spaced between the 10th and 90th percentiles of the training data values.
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Table 3 Test-set prediction error rates for the smoke data

Error rate (%)

Model Nonsmoke pixels Smoke pixels Overall

Main effects, logistic 21.1 25.9 21.6

Interactions, logistic 20.0 23.3 20.3

Main effects, autologistic 17.6 23.9 18.2

Interactions, autologistic 16.2 21.3 16.7

Adding interaction terms and using the autologistic model both yield improvements over the base logistic
regression model

The table also shows the values of λ̂ found by plug-in estimation. For both models,
a large value was chosen, indicating a high degree of spatial smoothing.

Of the twobestmodels shown in the table, the interactionsmodel had lower deviance
(as would be expected, given the larger pool of models it was drawn from). Hence, the
best 16-variable interactions model was taken as the final selection moving forward,
and the plug-in value λ̂ = 1.75 was used to make it an autologistic model for final
performance evaluation on the test images.

5.2 Prediction

Table 3 shows the test-set error rates for the best main effects model and the best
interactions model, both with λ = 0 (logistic model) and with λ = λ̂ (autologistic
model). It is clear that both adding in the interaction terms and including the pairwise
association have a beneficial impact on predictive ability.

The table shows both the class-conditional error rates as well as the overall rate. In
this case, we used the overall error rate as our objective, and trained our classifiers on
samples with equal numbers of smoke and nonsmoke pixels—essentially, we sought
to minimize overall error rate while keeping the class-conditional rates reasonably
balanced. It appears from the table that we achieved this result. We view the best
model’s overall error rate of 16.7% as quite successful, given the challenges of this
dataset (which are touched on in Sect. 6.3).

Figures 7 and 8 provide visual examples of the best model’s predictions. Each figure
shows only part of the ROI. Figure 7 gives an example of an image that is relatively
easy to segment. The RGB image on the left shows that the sky is largely cloud-
free, and the smoke in the image is thick (recall that this image is only used to aid
visualization; classification is based on the full hyperspectral data). The middle image
shows the predicted probability map from the independent-pixel model, while the
rightmost image shows the correspondingmap using the autologisticmodel. The effect
of including spatial association is very clear. In the largest smoke region, classification
is very good. The image does include some areas of false-negative predictions (which
are associated with “thin” smoke areas) as well as some false-positive regions (which
are associated with regions of cloud or snow).
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Fig. 7 A scene that is relatively easy to segment, showing the colour image and the fitted probability maps
for the logistic and autologistic models. Red outlines indicate the boundaries of the human-identified smoke
regions

Fig. 8 A scene that is harder to segment due to the presence of clouds and areas with thin smoke. The
autologistic model imparts spatial smoothness but cannot correct ambiguities inherent in the logistic model

Figure 8 gives the RGB image and the autologistic predictionmap for a scene that is
more challenging to classify. Although the thick smoke areas are correctly identified,
significant areas of both false-positive and -negative predictions are visible.

6 Discussion

This section expands somewhat on three topics that have arisen in the preceding
sections: the effect of coding and centring, the computational requirements of the
method, and practical considerations that arose in the smoke data analysis.

6.1 More on Coding and Centring

Figure 6 is one of the more interesting results in this work. It draws a sharp distinction
between the standard autologisticmodel with {−1, 1} coding and the other autologistic
variants. Two observations may help to understand the figure:

1. The plug-in estimation approach gives markedly different results for the two stan-
dard models with a different coding. This is a result of the previously mentioned
asymmetry inherent in the {0, 1} coding. This asymmetry is alleviated by changing
to the plus/minus coding.
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2. In contrast, the centred model gives the same result regardless of coding; but
this result involves no benefit. It seems that the centring adjustment eliminates
the asymmetry problem, but in a way that does not allow us to interpret λ as a
smoothing parameter. Joint estimation of (β, λ) would still be required to achieve
good performance.

A deeper understanding of the differences among the model variants would involve
a study of their equivalence and how they may be transformed into one another.
Importantly, we note that changing the coding or centring in an autologistic regression
is more than a parameter transformation; it actually results in a different probability
model. This can explain why the centred models seemingly resolve the problem of
asymmetry—the models give identical results with either coding—while still being
unsuitable for plug-in estimation.Weare currently studying theproperties of the coding
schemes and have found that the standard model with {−1, 1} coding has uniquely
desirable properties among the autologistic variants; we expect to publish results on
these properties in the near future.

It is also suggestive that the MPL and plug-in estimates of Table 1 are so similar.
Theoretical work on the quality of plug-in estimates (and the conditions under which
plug-in estimation is reasonable for prediction) is another potentially fruitful area for
future investigation.

6.2 Computational Considerations

The estimation run times in Table 1 were included to facilitate a few remarks about
the computational aspects of estimation. The task of computing the MPL estimates
is relatively straightforward. For estimation using a collection of m images, each n-
by-n, the (log) pseudolikelihood is a sum of mn2 terms. Any continuous optimization
routine can be used to find estimates of β and λ, but the objective function becomes
slow to compute as n grows. This is seen in the table, where the time to obtain MPL
estimates rose from about half a minute for n = 100, to 35 min for n = 800. One
could consider parallelization to improve performance, but this sort of computation (a
costly objective function involving a large number of small computations, inside an
optimization routine) is not trivial to parallelize efficiently.

For the plug-in method, the computational considerations are different. Conven-
tional optimization is only done for the independence model, where pre-existing
routines can be used to get estimates efficiently even for large datasets. Instead, the
computational overhead of the plug-in method is almost wholly due to the need for
sampling to estimate the marginal probabilities {pi } to generate predictions. For a set
of m images and v candidate values of λ a total of mv sampling runs (in our case,
Gibbs samplers) must be carried out. Although sampling is computationally intensive,
parallelization of sampling across the m images is very easy, since the task is a set of
lengthy, independent, computations. The plug-in run times in Table 1 show the time
required for performance evaluation at a single candidate λ value using 10 worker
processes on a 6-core workstation with hyperthreading.

As a final remark about run times, recall that in a real application with hyperspectral
data, model selection will be an important component of the estimation process. In
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the smoke identification application with GA search across many model sizes, the
model selection stage took approximately two days with computations parallelized on
the same six-core workstation. Because we used the two-stage estimation approach,
model selection only involved fitting standard logistic regressions. If instead we had
used MPL estimation, search time would take an impractical length of time.

6.3 Lessons from the Smoke Data

We view the results on the smoke images as positive, despite the still relatively high
error rates. This is for two reasons.

First, pixels were labelled as smoke even if the smoke was thin or indistinct, and
even if there was also cloud present. This was done with awareness that it would make
classificationmore difficult, in the spirit of testing the limits of themethodology.Much
lower error rates may be expected if we instead focus on the easier target of identifying
clear-sky areas with thick smoke or smoke plumes. Importantly, thick smoke is more
important from a health standpoint, so the methods of this article remain of interest
for smoke identification.

The second factor likely contributing to misclassification is a significant proportion
of labelling errors in the training data. It was stated in the introduction that ourmethods
are designed for cases where a human photointerpreter can identify the feature of
interest, but the smoke data only partially fit that description. The “true” smoke regions
were identified using only the RGB images, not the full hyperspectral data. When
smoke is diffuse or is obscured by cloud, it is more difficult to correctly label all pixels.

A few options exist to ameliorate the aforementioned problems. For example, a
multi-class labelling approach could be taken to handle both thick and thin smoke
areas. Our methods could also be adapted to a semi-supervised learning setting, where
only some of the image pixels are hand-labelled, or where clustering is employed
to establish natural groups of pixels (as in [21], Sect. 11.4). The semi-supervised
approach would also be attractive if trying to meld satellite data with ground truth
measurements from a limited number of monitoring stations. The autologistic model
would remain a means to introduce spatial association into such approaches.

Development of an independent-pixel logistic model with good predictive power is
essential for the methods described here to be effective. Expanding the logistic model
into an autologistic one can provide spatial smoothness, but will not be sufficient to
repair a poorly performing logisticmodel. It is important in an application, then, to take
care to build a good logistic model through appropriate data processing and feature
selection. To that end,we view theGAMapproach as a promising option for large-scale
hyperspectral image classification problems. It allows nonlinear relationships between
the predictors and the responses to be learned in a data-driven manner during training,
without introducing excessive computational burdens during themodel selection stage.
Depending on the application and the size of the candidate model, it is also possible
that the GAM component functions could provide useful scientific interpretations.

There are other potential additions and extensions of the autologistic regression
model that were not considered explicitly here: spatiotemporal modelling, including
other covariates, and background subtraction.
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The spatial autologistic model could be extended to a spatiotemporal one, simply
by extending the graph representation of the data. This would involve at least one
additional parameter to handle the temporal effect. For the smoke data, we discarded
the idea of including the temporal component early on, because the images exhibited
huge variations in smoke and cloud cover from day to day. A finer time resolution
would be required to derive benefit from spatiotemporal modelling.

Incorporating additional covariates, not originating in the raw images, into the
analysis is another alternative that is easily implemented. Measures of ground cover
or land use, for example, could be straightforwardly included by expanding the X
matrix of predictors. Including these as categorical variables in the model and allow-
ing interactions would make the regression model more flexible to adapt to different
ground-cover types.

Finally, background subtraction is a technique to consider to improve the quality
of regression models built from image data. This involves using a set of background-
subtracted images, where amedian background image (the hyperspectral equivalent of
the top image in Fig. 2, arising from smoke-free days with no forest fire events) would
be subtracted from all images before further analysis. Development of a background
image involves its own complications (image registration, time-varying background
characteristics, land use changes, and so on), but where such an image can be estab-
lished it is worth considering background subtraction. In our case, preliminary trials
with the subtracted images showed no benefit in terms of prediction accuracy, so we
used only the original unmodified images in the final analysis. Even so, further work
in this direction is being considered.

7 Conclusions

Remote sensing imagery is a potentially significant source of auxiliary data for quantifi-
cation of human health hazards. The comprehensive spatial coverage of satellite-borne
imaging products is particularly attractive, as it can augment ground-based observa-
tions from monitoring stations.

Identifying a well-defined hazard in a remote sensing image is a binary image seg-
mentation problem. The autologistic regression model is attractive for such problems.
It is a natural extension of logistic regression, allowing model-based spatial smooth-
ing in the predicted segmentations. Standard methods of estimation and prediction,
however, present a prohibitive computational burden when using this model with large
collections of megapixel-scale hyperspectral images.

The method presented here, summarized in Fig. 3, makes the autologistic regres-
sion approach feasible for large data sets of this type. The key feature of the proposed
approach is two-stage estimation of the regression coefficients and the pairwise
association parameter. Estimating the regression parameters under the assumption
of independence leads to huge computational savings. It allows estimation to be
done based on a sample of the training pixels, using standard logistic regression
code. Equally important, the improved computational efficiency makes it possible
to consider a larger space of candidate features, that will lead to better classifier
performance.
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The two-stage estimation has been made possible by the simple device of cod-
ing the binary variables {−1, 1}. The benefits of using this approach cannot be
achieved using the more standard {0, 1} coding, or using the centred autologistic
model.

It was shownwith simulated images and a real smoke identification example that the
proposed approach gives promising prediction results. The autologistic model behaves
in the desired manner, that is, as a spatially smoothed logistic regression classifier. The
methodology should be readily applicable to other hyperspectral image segmentation
applications where labelled training samples are available.
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